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DEFINITION
The Count-Min (CM) Sketch is a compact summary data structure capable of representing a high-dimensional vector and
answering queries on this vector, in particular point queries and dot product queries, with strong accuracy guarantees. Such
queries are at the core of many computations, so the structure can be used in order to answer a variety of other queries,
such as frequent items (heavy hitters), quantile finding, join size estimation, and more. Since the data structure can easily
process updates in the form of additions or subtractions to dimensions of the vector (which may correspond to insertions or
deletions, or other transactions), it is capable of working over streams of updates, at high rates.
The data structure maintains the linear projection of the vector with a number of other random vectors. These vectors
are defined implicitly by simple hash functions. Increasing the range of the hash functions increases the accuracy of
the summary, and increasing the number of hash functions decreases the probability of a bad estimate. These tradeoffs
are quantified precisely below. Because of this linearity, CM sketches can be scaled, added and subtracted, to produce
summaries of the corresponding scaled and combined vectors.

HISTORICAL BACKGROUND
The Count-Min sketch was first proposed in 2003 [5] as an alternative to several other sketch techniques, such as the Count
sketch [3] and the AMS sketch [1]. The goal was to provide a simple sketch data structure with a precise characterisation
of the dependence on the input parameters. The sketch has also been viewed as a realisation of a counting Bloom filter
or Multistage-Filter [8], which requires only limited independence randomness to show strong, provable guarantees. The
simplicity of creating and probing the sketch has led to its wide use in disparate areas since its initial description.

SCIENTIFIC FUNDAMENTALS
The CM sketch is simply an array of counters of width w and depth d, CM [1, 1] . . . CM [d, w]. Each entry of the array is
initially zero. Additionally, d hash functions

h1 . . . hd : {1 . . . n} → {1 . . . w}
are chosen uniformly at random from a pairwise-independent family. Once w and d are chosen, the space required is fixed:
the data structure is represented by wd counters and d hash functions (which can each be represented in O(1) machine
words [14]).

Update Procedure. Consider a vector a, which is presented in an implicit, incremental fashion (this abstract model
captures a wide variety of data stream settings, see entries on Data Stream Models for more details). This vector has
dimension n, and its current state at time t is a(t) = [a1(t), . . . ai(t), . . . an(t)]. Initially, a(0) is the zero vector, 0, so ai(0)
is 0 for all i. Updates to individual entries of the vector are presented as a stream of pairs. The tth update is (it, ct), meaning
that

ait(t) = ait(t− 1) + ct

ai′(t) = ai′(t− 1) i′ 6= it

This procedure is illustrated in Figure 1. In the remainder of this article, t is dropped, and the current state of the vector is
referred to as just a for convenience. It is assumed throughout that although values of ai increase and decrease with updates,
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Figure 1: Each item i is mapped to one cell in each row of the array of counts: when an update of ct to item it arrives, ct is
added to each of these cells

each ai ≥ 0. The Count-Min sketch also applies to the case where ais can be less than zero, with small factor increases in
space. Here, details of these extensions are omitted for simplicity of exposition (full details are in [5]).
When an update (it, ct) arrives, ct is added to one count in each row of the Count-Min sketch; the counter is determined by
hj . Formally, given (it, ct), the following modifications are performed:

∀1 ≤ j ≤ d : CM [j, hj(it)]← CM [j, hj(it)] + ct

Because computing each hash function takes O(1) (constant) time, the total time to perform an update is O(d), independent
of w. Since d is typically small in practice (often less than 10), updates can be processed at high speed.

Point Queries. A point query is to estimate the value of an entry in the vector ai. The point query procedure is similar
to updates: given a query point i, an estimate is found as âi = min1≤j≤d CM [j, hj(i)]. Since the space used by the sketch
is typically much smaller than that required to represent the vector exactly, there is necessarily some approximation in the
estimate, which is quantified as follows:
Theorem 1 (Theorem 1 from [5]). If w = d e

εe and d = dln 1
δ e, the estimate âi has the following guarantees: ai ≤ âi; and,

with probability at least 1− δ,
âi ≤ ai + ε‖a‖1.

The proof follows by considering the estimate in each row, and observing that the expected error in using CM [j, hj(i)] as an
estimate has expected (non-negative) error ‖a‖1/w. By the Markov inequality [14], the probability that this error exceeds
ε‖a‖1 is at most 1

e (where e is the base of the natural logarithm, i.e. 2.71828 . . ., a constant chosen to optimize the space
for fixed accuracy requirements). Taking the smallest estimate gives the best estimator, and the probability that this estimate
has error exceeding ε‖a‖1 is the probability that all estimates exceed this error, i.e. e−d ≤ δ.
This analysis makes no assumption about the distribution of values in a. However, in many applications there are Zipfian,
or power law, distributions of item frequencies. Here, the (relative) frequency of the ith most frequent item is proportional
to i−z , for some parameter z, where z is typically in the range 1—3 (z = 0 gives a perfectly uniform distribution). In such
cases, the skew in the distribution can be used to show a stronger space/accuracy tradeoff:
Theorem 2 (Theorem 5.1 from [7]). For a Zipf distribution with parameter z, the space required to answer point queries
with error ε‖a‖1 with probability at least 1− δ is given by O(ε−min{1,1/z} ln 1/δ).
Moreover, the dependency of the space on z is optimal:
Theorem 3 (Theorem 5.2 from [7]). The space required to answer point queries correctly with any constant probability and
error at most ε‖a‖1 is Ω(ε−1) over general distributions, and Ω(ε−1/z) for Zipf distributions with parameter z, assuming
the dimension of a, n is Ω(ε−min{1,1/z}).

Range, Heavy Hitter and Quantile Queries. A range query is to estimate
∑r

i=l ai for a range [l . . . r]. For small
ranges, the range sum can be estimated as a sum of point queries; however, as the range grows, the error in this approach
also grows linearly. Instead, log n sketches can be kept, each of which summarizes a derived vector ak where

ak[j] =
(j+1)2k−1∑

i=j2k

ai

for k = 1 . . . log n. A range of the form j2k . . . (j + 1)2k − 1 is called a dyadic range, and any arbitrary range [l . . . r] can
be partitioned into at most 2 log n dyadic ranges. With appropriate rescaling of accuracy bounds, it follows that:
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Theorem 4 (Theorem 4 from [5]). Count-Min sketches can be used to find an estimate r̂ for a range query on l . . . r such
that

r̂ − ε‖a‖1 ≤
r∑

i=l

ai ≤ r̂

The right inequality holds with certainty, and the left inequality holds with probability at least 1−δ. The total space required
is O( log2 n

ε log 1
δ ).

Closely related to the range query is the φ-quantile query, which is to find a point j such that

j∑
i=1

ai ≤ φ‖a‖1 ≤
j+1∑
i=1

ai.

A natural approach is to use range queries to binary search for a j which satisfies this requirement approximately (i.e.
tolerates up to ε‖a‖1 error in the above expression) given φ. In order to give the desired guarantees, the error bounds need
to be adjusted to account for the number of queries that will be made.
Theorem 5 (Theorem 5 from [5]). ε-approximate φ-quantiles can be found with probability at least 1−δ by keeping a data
structure with space O( 1

ε log2(n) log( log n
δ )). The time for each insert or delete operation is O(log(n) log( log n

δ )), and the
time to find each quantile on demand is O(log(n) log( log n

δ )).
Heavy Hitters are those points i such that ai ≥ φ‖a‖1 for some specified φ. The range query primitive based on Count-Min
sketches can again be used to find heavy hitters, by recursively splitting dyadic ranges into two and querying each half to
see if the range is still heavy, until a range of a single, heavy, item is found. Formally,
Theorem 6 (Theorem 6 from [5]). Using space O( 1

ε log(n) log
(

2 log(n)
δφ

)
), and time O(log(n) log

(
2 log n

δφ

)
) per update,

a set of approximate heavy hitters can be output so that every item with frequency at least (φ + ε)‖a‖1 is output, and with
probability 1− δ no item whose frequency is less than φ‖a‖1 is output.
For skewed Zipfian distributions, as described above, with parameter z > 1, it is shown more strongly that the top-k most
frequent items can be found with relative error ε using space only Õ(k

ε ) [7].

Inner product queries. The Count-Min sketch can also be used to estimate the inner product between two vectors; in
database terms, this captures the (equi)join size between relations. The inner product a · b, can be estimated by treating the
Count-Min sketch as a collection of d vectors of length w, and finding the minimum inner product between corresponding
rows of sketches of the two vectors. With probability 1 − δ, this estimate is at most an additive quantity ε‖a‖1‖b‖1 above
the true value of a · b. This is to be compared with AMS sketches which guarantee ε‖a‖2‖b‖2 additive error, but require
space proportional to 1

ε2 to make this guarantee.

Interpretation as Random Linear Projection. The sketch can also be interpreted as a collection of inner-products
between a vector representing the input and a collection of random vectors defined by the hash functions. Let a denote the
vector representing the input, so that a[i] is the sum of the updates to the ith location in the input. Let rj,k be the binary
vector such that rj,k[i] = 1 if and only if hj(i) = k. Then it follows that CM [j, k] = a · rj,k. Because of this linearity, it
follows immediately that if sketches of two vectors, a and b, are built then (1) the sketch of a+b (using the same w, d, hj) is
the (componentwise) sum of the sketches (2) the sketch of λa for any scalar λ is λ times the sketch of a. In other words, the
sketch of any linear combination of vectors can be found. This property is useful in many applications which use sketches.
For example, it allows distributed measurements to be taken, sketched, and combined by only sending sketches instead of
the whole data.

Conservative update. If only positive updates arrive, then an alternate update methodology may be applied, known
as conservative update (due to Estan and Varghese [8]). For an update (i, c), âi is computed, and the counts are modified
according to ∀1 ≤ j ≤ d : CM [j, hj(i)] ← max(CM [j, hj(i)], âi + c). It can be verified that procedure still ensures
for point queries that ai ≤ âi, and that the error is no worse than in the normal update procedure; it is remarked that this
can improve accuracy “up to an order of magnitude” [8]. Note however that deletions or negative updates can no longer be
processed, and the additional processing that must be performed for each update could effectively halve the throughput.

KEY APPLICATIONS
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Since its description and initial analysis, the Count-Min Sketch has been applied in a wide variety of situations. Here is a
list of some of the ways in which it has been used or modified.

Lee et al. [13] propose using least-squares optimization to produce estimates from Count-Min Sketches for point
queries (instead of returning the minimum of locations where the item was mapped). It was shown that this approach
can give significantly improved estimates, although at the cost of solving a convex optimization problem over n
variables (where n is the size of the domain from which items are drawn, typically 232 or higher).

••The “skipping” technique, proposed by Bhattacharrya et al. [2] entails avoiding adding items to the sketch (and saving
the cost of the hash function computations) when this will not affect the accuracy too much, in order to further increase
throughout in high-demand settings.

•Indyk [10] uses the Count-Min Sketch to estimate the residual mass after removing a subset of items. That is, given a
(small) set of indices I , to estimate

∑
i 6∈I ai. This is needed in order to find clusterings of streaming data.

•The entropy of a data stream is a function of the relative frequencies of each item or character withn the stream.
Using Count-Min Sketches within a larger data structure based on additional hashing techniques, B. Laksminath and
Ganguly [9] showed how to estimate this entropy to within relative error.

•Sarlós et al. [17] gave approximate algorithms for personalized page rank computations which make use of Count-Min
Sketches to compactly represent web-size graphs.

•In describing a system for building selectivity estimates for complex queries, Spiegel and Polyzotis [18] use Count-Min
Sketches in order to allow clustering over a high-dimensional space.

•Rusu and Dobra [16] study a variety of sketches for the problem of inner-product estimation, and conclude that Count-
Min sketch has a tendency to outperform its theoretical worst-case bounds by a considerable margin, and gives better
results than some other sketches for this problem.

•Many applications call for tracking distinct counts: that is, ai should represent the number of distinct updates to
position i. This can be achieved by replacing the counters in the Count-Min sketch with approximate Count-Distinct
summaries, such as the Flajolet-Martin sketch. This is described and evaluated in [6, 11].

•Privacy preserving computations ensure that multiple parties can cooperate to compute a function of their data while
only learning the answer and not anything about the inputs of the other participants. Roughan and Zhang demonstrate
that the Count-Min Sketch can be used within such computations, by applying standard techniques for computing
privacy preserving sums on each counter independently [15].

Related ideas to the Count-Min Sketch have also been combined with group testing to solve problems in the realm of
Compressed Sensing, and finding significant changes in dynamic streams.

FUTURE DIRECTIONS
As is clear from the range of variety of applications described above, Count-Min sketch is a versatile data structure which is
finding applications within Data Stream systems, but also in Sensor Networks, Matrix Algorithms, Computational Geometry
and Privacy-Preserving Computations. It is helpful to think of the structure as a basic primitive which can be applied
wherever approximate entries from high dimensional vectors or multisets are required, and one-sided error proportional to
a small fraction of the total mass can be tolerated (just as a Bloom filter should be considered in order to represent a set
wherever a list or set is used and space is at a premium). With this in mind, further applications of this synopsis can be
expected to be seen in more settings.
As noted below, sample implementations are easily available in a variety of languages, and integration into standard libraries
will further widen the availability of the structure. Further, since many of the applications are within high-speed data stream
monitoring, it is natural to look to hardware implementations of the sketch. In particular, it will be of interest to understand
how modern multi-core architectures can take advantage of the natural parallelism inherent in the Count-Min Sketch (since
each of the d rows are essentially independent), and to explore the implementation chioces that follow.

EXPERIMENTAL RESULTS
Experiments performed in [7] analyzed the error for point queries and F2 (self-join size) estimation, in comparison to other
sketches. High accuracy was observed for both queries, for sketches ranging from a few kilobytes to a megabyte in size. The
typical parameters of the sketch were a depth d of 5, and a width of a few hundred to thousands. Implementations on desktop
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machines achieved between and 2 and 3 million updates per second. Other implementation have incorporated Count-Min
Sketch into high speed streaming systems such as Gigascope [4], and tuned it to process packet streams of multi-gigabit
speeds.
Lai and Byrd report on an implementation of Count-Min sketches on a low-power stream processor [12], capable of
processing 40byte packets at a throughput rate of up to 13Gbps. This is equivalent to about 44 million updates per second.

URL TO CODE
Several example implementations of the Count-Min sketch are available. C code is given by the MassDal code bank: http:
//www.cs.rutgers.edu/∼muthu/massdal-code-index.html. C++ code due to Marios Hadjieleftheriou is
available from http://research.att.com/∼marioh/sketches/index.html.

CROSS REFERENCE
Other important data sketches / synopses include the AMS sketches, primarily for join and self-join size estima-
tion, and Flajolet-Martin sketches, for count-distinct estimation. Many other algorithms have been proposed for
frequent items on streams and quantiles on streams; which algorithm is most appropriate depends on the exact situation.
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